
Creative RAM savings in WebGL
A tale about having fun with textures, and GLSL… in xeokit-sdk!



IMPORTANT!
Effort supported by:
www.tribia.com/en/

(part of) www.addnodegroup.com/en/home-page (part of)

http://www.tribia.com/en/
https://www.addnodegroup.com/en/home-page


What is this about?



What is this about?

A way to aggressively reduce GPU-RAM consumption in WebGL:



What is this about?

A way to aggressively reduce GPU-RAM consumption in WebGL:

Using data textures…



What is this about?

A way to aggressively reduce GPU-RAM consumption in WebGL:

Using data textures…

- that contain “data”



What is this about?

A way to aggressively reduce GPU-RAM consumption in WebGL:

Using data textures…

- that contain “data” (indices, colors, normals, matrices)



What is this about?

A way to aggressively reduce GPU-RAM consumption in WebGL:

Using data textures…

- that contain “data” (indices, colors, normals, matrices)

- read, normalized “data”!



What is this about?

A way to aggressively reduce GPU-RAM consumption in WebGL:

Using data textures…

- that contain “data” (indices, colors, normals, matrices)

- read, normalized “data”! NUMBERS (GPU bytes/tri)

original xeokit-sdk: ~65 bytes/tri
new usage: 8~12 bytes/tri



Key ideas!

“Normalize data” => avoid duplicate data storage



Key ideas!

“Normalize data” => avoid duplicate data storage
unique positions - no normals - per object info



Key ideas!

“Normalize data” => avoid duplicate data storage
unique positions - no normals - per-object info

“Demoted” data-types => why 16 or 32 bit indices arrays?



Key ideas!

“Normalize data” => avoid duplicate data storage
unique positions - no normals - per-object info

“Demoted” data-types => why 16 or 32 bit indices arrays?
bucketting (8 bits if possible!) - re-bucketting (32 => 16 // 16 => 8)



Key ideas!

“Normalize data” => avoid duplicate data storage
unique positions - no normals - per-object info

“Demoted” data-types => why 16 or 32 bit indices arrays?
bucketting (8 bits if possible!) - re-bucketting (32 => 16 // 16 => 8)

One “gl.drawArrays” to rule them all!



Key ideas!

“Normalize data” => avoid duplicate data storage
unique positions - no normals - per-object info

“Demoted” data-types => why 16 or 32 bit indices arrays?
rucketting (8 bits if possible!) - re-bucketting (32 => 16 // 16 => 8)

One “gl.drawArrays” to rule them all!
for multiple batched objects - also N instances of M different obejcts



Key ideas!

“Normalize data” => avoid duplicate data storage
unique positions - no normals - per-object info

“Demoted” data-types => why 16 or 32 bit indices arrays?
rucketting (8 bits if possible!) - re-bucketting (32 => 16 // 16 => 8)

One “gl.drawArrays” to rule them all!
for multiple batched objects - also N instances of M different obejcts
bye bye gl.drawInstanced* => from 2 fps to 8 fps



How!?



How!?

PLACEHOLDER for boring comparison between C/C++ and GLSL



How!?

Data-textures can contain “data” (positions / indices / colors)



How!?

Data-textures can contain “data” (positions / indices / colors)

But can also contain metadata about the “data”!

- object id’s, internal variables, … => “pointers”



How!?

Data-textures can contain “data” (positions / indices / colors)

But can also contain metadata about the “data”!

- object id’s, internal variables, … => “pointers”

- everything you can process “locally” (as in block compression)
- goal: minimize data accesses



Small demo… (see videos in link)
https://github.com/xeokit/xeokit-sdk/pull/824

https://github.com/xeokit/xeokit-sdk/pull/824


… and a bit of code!


	Creative RAM savings in WebGL 
	IMPORTANT! 
	What is this about? 
	What is this about? 
	What is this about? 
	What is this about? 
	What is this about? 
	What is this about? 
	What is this about? 
	Key ideas!
	Key ideas!
	Key ideas!
	Key ideas!
	Key ideas!
	Key ideas!
	Key ideas!
	How!?
	How!?
	How!?
	How!?
	How!?
	Small demo… (see videos in link)
	… and a bit of code!

