
Creative RAM savings in WebGL
A tale about having fun with textures, and GLSL… in xeokit-sdk!



IMPORTANT!
Effort supported by:
www.tribia.com/en/

(part of) www.addnodegroup.com/en/home-page (part of)

http://www.tribia.com/en/
https://www.addnodegroup.com/en/home-page
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What is this about?

A way to aggressively reduce GPU-RAM consumption in WebGL:

Using data textures…

- that contain “data” (indices, colors, normals, matrices)

- read, normalized “data”! NUMBERS (GPU bytes/tri)

original xeokit-sdk: ~65 bytes/tri
new usage: 8~12 bytes/tri
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Key ideas!

“Normalize data” => avoid duplicate data storage
unique positions - no normals - per-object info

“Demoted” data-types => why 16 or 32 bit indices arrays?
rucketting (8 bits if possible!) - re-bucketting (32 => 16 // 16 => 8)

One “gl.drawArrays” to rule them all!
for multiple batched objects - also N instances of M different obejcts
bye bye gl.drawInstanced* => from 2 fps to 8 fps
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PLACEHOLDER for boring comparison between C/C++ and GLSL
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How!?

Data-textures can contain “data” (positions / indices / colors)

But can also contain metadata about the “data”!

- object id’s, internal variables, … => “pointers”

- everything you can process “locally” (as in block compression)
- goal: minimize data accesses



Small demo… (see videos in link)
https://github.com/xeokit/xeokit-sdk/pull/824

https://github.com/xeokit/xeokit-sdk/pull/824


… and a bit of code!
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